YNAO OpenIR  > 太阳物理研究组
太阳总辐照的演化特征分析
Alternative TitleEvolution Character Analysis of Total Solar Irradiance
向南彬
Subtype硕士
Thesis Advisor李可军
2013-05
Degree Grantor中国科学院研究生院(云南天文台)
Place of Conferral北京
Degree Discipline天体物理
Keyword太阳总辐照 小波分析 小波调谐 小波交叉 相互关系
Abstract太阳总辐照(Total Solar Irradiance, TSI)是指在平均日地距离处,单位时间到达地球大气层顶部单位面积的所有波段的太阳电磁辐射能量总和。TSI影响着进入地球系统的总的能量,而这个总能量几乎驱动着地球系统内部所有已知的自然规律和生物圈的循环,是地球最重要的能量来源。在1978年10月“Hickey-Frieden 空腔辐射器”(Hickey-Frieden cavity radiometer, HF)观测TSI 之前,由于地面观测设备的低准确性,人们认为TSI是一个不变的常数,因此被称为“太阳常数”。自从HF 被发射升空以后, TSI就得到了几个辐射计相继进行的连续观测(一般有2~4个辐射计在地球大气层外同时进行)。由于这些空间辐射计具有较高的准确性,人们认识到TSI从几分钟到数十年的时间尺度上都是变化的。TSI产生地球的辐射环境并且影响地球温度和大气, 即使较小的持续的TSI的变化都会对地球气候产生深远的影响。因此, 弄清楚TSI 的变化怎样影响地球气候是非常重要的,并且现在有了许多这方面的调查研究,尤其是TSI对地球长周期气候变化的影响以及目前全球气候变暖方面都具有非常重要的意义。同时,TSI的研究对我们认识太阳表面及内部的物理过程、地球大气、日地关系等有着非常重要的意义。TSI的空间观测仅仅从1978年开始, 由于只有短短的34年的直接观测数据, 重构较长时间尺度的TSI是非常重要和必须的,并且现在TSI重构方面取得了长足的进步,但同时也存在一定的不足,所以需要进一步弄清楚TSI变化的物理机制。 首先介绍了太阳辐照目前的研究进展情况以及一些重大成果,包括太阳辐照的观测、重构和演化特征分析。然后我们利用连续小波分析、小波交叉和小波调谐等方法分析TSI与太阳黑子面积和Mg II 特征指数的关系,得到了TSI在23和24太阳活动周的准旋转周期是不同的,并且分析出TSI与这些代理物之间的相互关系。 我们利用美国宇航局太阳辐射和气候试验卫星(Solar Radiation & Climate Experiment, SORCE)上的太阳总辐照检测仪(Total Irradiance Monitor, TIM)所观测的TSI,以及太阳黑子面积和Mg II线心线翼比的研究表明,太阳总辐照在23和24太阳活动周的显著周期分别为35和26 d, 进而推断太阳的准旋转周期在23和24太阳活动周也分别为35和26 d. 太阳总辐照在24周极小期的值可能与蒙德极小期的值相近。在一个太阳旋转周到几个月的时间尺度上, 太阳黑子是引起太阳总辐照变化的主要原因, 但不是唯一的原因。在几天到一个太阳旋转周的时间尺度上, 太阳总辐照的变化与Mg II特征指数是不相关的。利用ACRIM 合成的TSI研究发现,在太阳活动周时间尺度上,TSI的变化与太阳黑子和Mg II 特征指数是不相关的。
Other AbstractThe total solar irradiance (TSI) is the total solar electromagnetic energy flux over the whole spectrum which arrives at the top of the Earth’s atmosphere at the mean Sun-Earth distance, and it affects the total energy from the Sun into the Earth system. Energy from the Sun reaching the Earth drives almost every known physical and biological cycle in Earth system, and is the very important source of energy. Before TSI was measured by Hickey-Frieden cavity radiometer (HF) on Nimbus 7 in October 1978, because of the low precision of the ground-based instruments, people thought TSI was a constant, so it was called Solar Constant. After HF was launched into space , there are usually 2~4 radiometers onboard spacecraft outside the Earth’s atmosphere which measured TSI. Because these radiometers have measured TSI, people know that TSI varies on all time scales, i.e. minutes to decades. TSI generates the Earth’s radiation environment and influences its temperature and atmosphere, even small persistent variation of the solar irradiance takes part in climate changes, so it is very import for us to understand how the variations of TSI affect the Earth’s climate system, and now there are many investigations, especially investigations which have considered how the TSI influences the Earth’s climate of the long time and the global worming problem. At the same time, the research of TSI has important implications for our understanding of physical mechanism of the solar surface and interior, Earth’s atmosphere, solar-terrestrial relationship, and so on. Space-based observations are only from 1978 on, due to short duration of direct measurement of TSI; constructions of TSI on long time scales are of importance and needed. The constructions of TSI have made big progress, but have some shortages too, so we should know the physical mechanism of the variations of TSI better. To begin with, we review the research of TSI, including the measurements of TSI, constructions of TSI, and evolution characters of TSI. Then, utilizing the continuous wavelet transform, cross wavelet transform and wavelet coherence, we analyze the relations of TSI with sunspot area and Mg II index. We find the solar quasi-rotation periods are difference in solar cycle 23 and 24, and get the relations of TSI with these proxies. We analyze the relations of TSI, which are measured by Total Irradiance Monitor of Solar Radiation & Climate Experiment, with sunspot area and Mg II index, and found the significant periods of total solar irradiance are 35 and 26 days in solar cycle 23 and 24, respectively, it is inferred that the solar quasi-rotation periods are 35 and 26 days in solar cycle 23 and 24, respectively. The value of total solar irradiance in solar cycle 24 minimum should be close to the value of Maunder minimum. On short time scales, sunspots should be the main reason to cause variations of total solar irradiance on the scale of one solar rotation cycle to several months, but not the unique one, and the variations of total solar irradiance are not related with Mg II index on the scale of a few days to one solar rotation cycle. Composite TSI of ACRIM are utilized here to analyze too, and find the variations of TSI are not relations with sunspot area and Mg index on the scale of the Schwabe solar cycle.
Subject Area天文学
Pages45
Language中文
Document Type学位论文
Identifierhttp://ir.ynao.ac.cn/handle/114a53/6622
Collection太阳物理研究组
Recommended Citation
GB/T 7714
向南彬. 太阳总辐照的演化特征分析[D]. 北京. 中国科学院研究生院(云南天文台),2013.
Files in This Item:
File Name/Size DocType Version Access License
太阳总辐照的演化特征分析.pdf(2285KB)学位论文 开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[向南彬]'s Articles
Baidu academic
Similar articles in Baidu academic
[向南彬]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[向南彬]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 太阳总辐照的演化特征分析.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.