YNAO OpenIR  > 高能天体物理研究组
Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle
Aharonian, F.26,27; An, Q.4,5; Axikegu20; Bai, L.X.21; Bai, Y.X.1,3; Bao, Y.W.15; Bastieri, D.10; Bi, X.J.1,2,3; Bi, Y.J.1,3; Cai, H.23; Cai, J.T.10; Cao, Z.1,2,3; Cao, Z.4,5; Chang, J.16; Chang, J.F.1,3,4; Chang, X.C.1,3; Chen, B.M.13; Chen, J.21; Chen, L.1,2,3; Chen, L.18; Chen, L.20; Chen, M.J.1,3; Chen, M.L.1,3,4; Chen, Q.H.20; Chen, S.H.1,2,3; Chen, S.Z.1,3; Chen, T.L.22; Chen, X.L.1,2,3; Chen, Y.15; Cheng, N.1,3; Cheng, Y.D.1,3; Cui, S.W.13; Cui, X.H.7; Cui, Y.D.11; Dai, B.Z.24; Dai, H.L.1,3,4; Dai, Z.G.15; Danzengluobu22; Volpe, D. della31; Piazzoli, B. D'Ettorre28; Dong, X.J.1,3; Fan, J.H.10; Fan, Y.Z.16; Fan, Z.X.1,3; Fang, J.24; Fang, K.1,3; Feng, C.F.17; Feng, L.16; Feng, S.H.1,3; Feng, Y.L.16; Gao, B.1,3; Gao, C.D.17; Gao, Q.22; Gao, W.17; Ge, M.M.24; Geng, L.S.1,3; Gong, G.H.6; Gou, Q.B.1,3; Gu, M.H.1,3,4; Guo, J.G.1,2,3; Guo, X.L.20; Guo, Y.Q.1,3; Guo, Y.Y.1,2,3,16; Han, Y.A.14; He, H.H.1,2,3; He, H.N.16; He, J.C.1,2,3; He, S.L.10; He, X.B.11; He, Y.20; Heller, M.31; Hor, Y.K.11; Hou, C.1,3; Hou X(侯贤)25; Hu, H.B.1,2,3; Hu, S.21; Hu, S.C.1,2,3; Hu, X.J.6; Huang, D.H.20; Huang, Q.L.1,3; Huang, W.H.17; Huang, X.T.17; Huang, Z.C.20; Ji, F.1,3; Ji, X.L.1,3,4; Jia, H.Y.20; Jiang, K.4,5; Jiang, Z.J.24; Jin, C.1,2,3; Kuleshov, D.29; Levochkin, K.29; Li, B.B.13; Li, C.1,3; Li, C.4,5; Li, F.1,3,4; Li, H.B.1,3; Li, H.C.1,3; Li, H.Y.5,16; Li, J.1,3,4; Li, K.1,3; Li, W.L.17; Li, X.4,5; Li, X.20; Li, X.R.1,3; Li, Y.21; Li, Y.Z.1,2,3; Li, Z.1,3; Li, Z.9; Liang, E.W.12; Liang, Y.F.12; Lin, S.J.11; Liu, B.5; Liu, C.1,3; Liu, D.17; Liu, H.20; Liu, H.D.14; Liu, J.1,3; Liu, J.L.19; Liu, J.S.11; Liu, J.Y.1,3; Liu, M.Y.22; Liu, R.Y.15; Liu, S.M.16; Liu, W.1,3; Liu, Y.N.6; Liu, Z.X.21; Long, W.J.20; Lu, R.24; Lv, H.K.1,3; Ma, B.Q.9; Ma, L.L.1,3; Ma, X.H.1,3; Mao JR(毛基荣)25; Masood, A.20; Mitthumsiri, W.32; Montaruli, T.31; Nan, Y.C.17; Pang, B.Y.20; Pattarakijwanich, P.32; Pei, Z.Y.10; Qi, M.Y.1,3; Qiao, B.Q.1; Ruffolo, D.32; Rulev, V.29; Sáiz, A.32; Shao, L.13; Shchegolev, O.29,30; Sheng, X.D.1,3; Shi, J.R.1,3; Song, H.C.9; Stenkin, Yu.V.29,30; Stepanov, V.29; Sun, Q.N.20; Sun, X.N.12; Sun, Z.B.8; Tam, P.H.T.11; Tang, Z.B.4,5; Tian, W.W.2,7; Wang, B.D.1,3; Wang, C.8; Wang, H.20; Wang, H.G.10; Wang JC(王建成)25; Wang, J.S.19; Wang, L.P.17; Wang, L.Y.1,3; Wang, R.N.20; Wang, W.11; Wang, W.23; Wang, X.G.12; Wang, X.J.1,3; Wang, X.Y.15; Wang, Y.D.1,3; Wang, Y.J.1,3; Wang, Y.P.1,2,3; Wang, Z.1,3,4; Wang, Z.19; Wang, Z.H.21; Wang, Z.X.24; Wei, D.M.16; Wei, J.J.16; Wei, Y.J.1,2,3; Wen, T.24; Wu, C.Y.1,3; Wu, H.R.1,3; Wu, S.1,3; Wu, W.X.20; Wu, X.F.16; Xi, S.Q.20; Xia, J.5,16; Xia, J.J.20; Xiang, G.M.2,18; Xiao, G.1,3; Xiao, H.B.10; Xin, G.G.23; Xin, Y.L.20; Xing, Y.18; Xu, D.L.19; Xu, R.X.9; Xue, L.17; Yan DH(闫大海)25; Yang, C.W.21; Yang, F.F.1,3,4; Yang, J.Y.11; Yang, L.L.11; Yang, M.J.1,3; Yang, R.Z.5; Yang, S.B.24; Yao, Y.H.21; Yao, Z.G.1,3; Ye, Y.M.6; Yin, L.Q.1,3; Yin, N.17; You, X.H.1,3; You, Z.Y.1,2,3; Yu, Y.H.17; Yuan, Q.16; Zeng, H.D.16; Zeng, T.X.1,3,4; Zeng, W.24; Zeng, Z.K.1,2,3; Zha, M.1,3; Zhai, X.X.1,3; Zhang, B.B.15; Zhang, H.M.15; Zhang, H.Y.17; Zhang, J.L.7; Zhang, J.W.21; Zhang, L.24; Zhang, L.13; Zhang, L.X.10; Zhang, P.F.24; Zhang, P.P.13; Zhang, R.5,16; Zhang, S.R.13; Zhang, S.S.1,3; Zhang, X.15; Zhang, X.P.1,3; Zhang, Y.1,16; Zhang, Y.1,3; Zhang, Y.F.20; Zhang, Y.L.1,3; Zhao, B.20; Zhao, J.1,3; Zhao, L.4,5; Zhao, L.Z.13; Zhao, S.P.16,17; Zheng, F.8; Zheng, Y.20; Zhou, B.1,3; Zhou, H.19; Zhou, J.N.18; Zhou, P.15; Zhou, R.21; Zhou, X.X.20; Zhu, C.G.17; Zhu, F.R.20; Zhu, H.7; Zhu, K.J.1,2,3,4; Zuo, X.1,3
Source PublicationCHINESE PHYSICS C
2021-08
Volume45Issue:8
DOI10.1088/1674-1137/ac041b
Contribution Rank第25完成单位
Indexed BySCI
KeywordLHAASO-WCDA Crab Nebula angular resolution spectral energy distribution
Abstract

The first Water Cherenkov detector of the LHAASO experiment (WCDA-1) has been operating since April 2019. The data for the first year have been analyzed to test its performance by observing the Crab Nebula as a standard candle. The WCDA-1 achieves a sensitivity of 65 mCU per year, with a statistical threshold of 5 sigma. To accomplish this, a 97.7% cosmic-ray background rejection rate around 1 TeV and 99.8% around 6 TeV with an approximate photon acceptance of 50% is achieved after applying an algorithm to separate gamma-induced showers. The angular resolution is measured using the Crab Nebula as a point source to be approximately 0.45 degrees at 1 TeV and better than 0.2 degrees above 6 TeV, with a pointing accuracy better than 0.05 degrees. These values all match the design specifications. The energy resolution is found to be 33% for gamma rays around 6 TeV. The spectral energy distribution of the Crab Nebula in the range from 500 GeV to 15.8 TeV is measured and found to be in agreement with the results from other TeV gamma ray observatories.

Funding ProjectNational Key R&D program of China[2018YFA0404201] ; National Key R&D program of China[2018YFA0404202] ; National Key R&D program of China[2018YFA0404203] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12022502] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11905227] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1931112] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11635011] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11761141001] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[Y811A35] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[11675187] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1831208] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[U1931111] ; Thailand Science Research and Innovation[RTA6280002]
Funding OrganizationNational Key R&D program of China[2018YFA0404201, 2018YFA0404202, 2018YFA0404203] ; National Natural Science Foundation of ChinaNational Natural Science Foundation of China (NSFC)[12022502, 11905227, U1931112, 11635011, 11761141001, Y811A35, 11675187, U1831208, U1931111] ; Thailand Science Research and Innovation[RTA6280002]
Language英语
Subject Area物理学 ; 高能物理学 ; 天文学 ; 天体物理学 ; 高能天体物理学
MOST Discipline Catalogue理学 ; 理学::物理学 ; 理学::天文学
SubtypeArticle
PublisherIOP Publishing Ltd
Publication PlaceTEMPLE CIRCUS, TEMPLE WAY, BRISTOL BS1 6BE, ENGLAND
ISSN1674-1137
URL查看原文
WOS IDWOS:000739534700001
WOS Research AreaPhysics
WOS SubjectPhysics, Nuclear ; Physics, Particles & Fields
WOS KeywordTEV ; SPECTRUM ; TIBET ; ENERGY
Citation statistics
Document Type期刊论文
Version出版稿
Identifierhttp://ir.ynao.ac.cn/handle/114a53/24778
Collection高能天体物理研究组
星系类星体研究组
Corresponding AuthorCao, Z.; Cao, Z.; Feng, L.; Hou X(侯贤); Li, Y.; Wang, Z.H.; Wu, H.R.; You, Z.Y.
Affiliation1.Key Laboratory of Particle Astrophyics & Experimental Physics Division & Computing Center, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China;
2.University of Chinese Academy of Sciences, Beijing 100049, China;
3.TIANFU Cosmic Ray Research Center, Chengdu, Sichuan, China;
4.State Key Laboratory of Particle Detection and Electronics, China;
5.University of Science and Technology of China, Hefei 230026, China;
6.Department of Engineering Physics, Tsinghua University, Beijing 100084, China;
7.National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China;
8.National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China;
9.School of Physics, Peking University, Beijing 100871, China;
10.Center for Astrophysics, Guangzhou University, Guangzhou 510006, China;
11.School of Physics and Astronomy & School of Physics (Guangzhou), Sun Yat-sen University, Zhuhai 519082, China;
12.School of Physical Science and Technology, Guangxi University, Nanning 530004, China;
13.Hebei Normal University, Shijiazhuang 050024, China;
14.School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450001, China;
15.School of Astronomy and Space Science, Nanjing University, Nanjing 210023, China;
16.Key Laboratory of Dark Matter and Space Astronomy, Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210023, China;
17.Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China;
18.Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai 200030, China;
19.Tsung-Dao Lee Institute & School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China;
20.School of Physical Science and Technology & School of Information Science and Technology, Southwest Jiaotong University, Chengdu 610031, China;
21.College of Physics, Sichuan University, Chengdu 610065, China;
22.Key Laboratory of Cosmic Rays (Tibet University), Ministry of Education, Lhasa 850000, China;
23.School of Physics and Technology, Wuhan University, Wuhan 430072, China;
24.School of Physics and Astronomy, Yunnan University, Kunming 650091, China;
25.Yunnan Observatories, Chinese Academy of Sciences, Kunming 650216, China;
26.Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, 2 Dublin, Ireland;
27.Max-Planck-Institut for Nuclear Physics, P.O. Box 103980, Heidelberg 69029, Germany;
28.Dipartimento di Fisica dell'Università di Napoli
29.Institute for Nuclear Research of Russian Academy of Sciences, Moscow 117312, Russia;
30.Moscow Institute of Physics and Technology, Moscow 141700, Russia;
31.Département de Physique Nucléaire et Corpusculaire, Faculté de Sciences, Université de Genève, 24 Quai Ernest Ansermet, Geneva 1211, Switzerland;
32.Department of Physics, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
Corresponding Author AffilicationYunnan Observatories, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
Aharonian, F.,An, Q.,Axikegu,et al. Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle[J]. CHINESE PHYSICS C,2021,45(8).
APA Aharonian, F..,An, Q..,Axikegu.,Bai, L.X..,Bai, Y.X..,...&Zuo, X..(2021).Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle.CHINESE PHYSICS C,45(8).
MLA Aharonian, F.,et al."Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle".CHINESE PHYSICS C 45.8(2021).
Files in This Item:
File Name/Size DocType Version Access License
Performance of LHAAS(20525KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[Aharonian, F.]'s Articles
[An, Q.]'s Articles
[Axikegu]'s Articles
Baidu academic
Similar articles in Baidu academic
[Aharonian, F.]'s Articles
[An, Q.]'s Articles
[Axikegu]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[Aharonian, F.]'s Articles
[An, Q.]'s Articles
[Axikegu]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: Performance of LHAASO-WCDA and observation of the Crab Nebula as a standard candle.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.