YNAO OpenIR  > 抚仙湖太阳观测站
机器学习在太阳物理中的应用
Alternative TitleThe application of machine learning in solar physics
刘辉1,2; 季凯帆1; 金振宇1
Source Publication中国科学:物理学 力学 天文学(Scientia Sinica Pysica, Mechanica & Astronomica)
2019
Volume49Issue:10Pages:105-117
DOI10.1360/SSPMA-2019-0031
ClassificationP182 ; Tp18
Contribution Rank第1完成单位
Indexed ByCSCD ; 核心
Keyword太阳物理 太阳活动 机器学习 深度学习
Abstract

太阳物理研究已经进入大数据时代,而机器学习作为大数据研究的一种良好工具已经获得越来越多的认可.本文评述了自2007年以来机器学习在太阳物理中的应用.从结果上看,最近4年这一领域的研究明显增加.所利用的数据包括地面和空间的各种仪器、各种类型和波段的太阳观测资料.研究领域涵盖太阳耀斑、日冕物质抛射、太阳黑子等太阳物理研究的主要方面.目前虽然获得一些很好的结果,但尚未有突破性的进展.使用的机器学习方法涉及分类、回归、聚类、降维以及深度学习等手段,但经典的算法,尤其是分类方法依然占据主导地位.这意味着机器学习在太阳物理的应用还处于起步阶段,但同样也意味着在这一领域还有很多工作可以深入开展. 

Other Abstract

Solar physics has entered the era of big data, and machine learning has gained more and more recognition as a good tool for big data research. This paper reviews the application results of machine learning in solar physics since 2007. Our studies have shown that research in this field has increased significantly during the last four years. Massive solar observation data obtained from various instruments on the ground and in space have been applied, and the topics have covered major aspects of solar physics, such as solar flares, coronal mass ejections, sunspots. Although some good results have emerged and proved that machine learning is suitable for data analysis of solar physics, there has not been a
breakthrough yet. The machines learning methods that used in this field involve classification, regression, clustering, dimensionality reduction, and deep learning. However, classical algorithms, especially classical  lassification method is more popular. This means that the application of machine learning in solar physics is still in its infancy, but it also means
that there is still a lot of work in this field that can be studied in the future.

Funding Project国家自然科学基金[11873027] ; 国家自然科学基金[11773072] ; 国家自然科学基金[11573012] ; 国家自然科学基金[11833010]
Funding Organization国家自然科学基金[11873027, 11773072, 11573012, 11833010]
Language中文
Subject Area天文学 ; 太阳与太阳系 ; 太阳与太阳系其他学科 ; 计算机科学技术 ; 人工智能 ; 计算机应用
MOST Discipline Catalogue理学 ; 理学::天文学 ; 工学 ; 工学::计算机科学与技术(可授工学、理学学位)
PublisherSCIENCE CHINA PRESS
ISSN1674-7275
Citation statistics
Document Type期刊论文
Identifierhttp://ir.ynao.ac.cn/handle/114a53/20883
Collection抚仙湖太阳观测站
Corresponding Author季凯帆
Affiliation1.中国科学院云南天文台, 昆明, 650216
2.昆明理工大学信息工程与自动化学院, 昆明, 650500
First Author AffilicationYunnan Observatories, Chinese Academy of Sciences
Corresponding Author AffilicationYunnan Observatories, Chinese Academy of Sciences
Recommended Citation
GB/T 7714
刘辉,季凯帆,金振宇. 机器学习在太阳物理中的应用[J]. 中国科学:物理学 力学 天文学(Scientia Sinica Pysica, Mechanica & Astronomica),2019,49(10):105-117.
APA 刘辉,季凯帆,&金振宇.(2019).机器学习在太阳物理中的应用.中国科学:物理学 力学 天文学(Scientia Sinica Pysica, Mechanica & Astronomica),49(10),105-117.
MLA 刘辉,et al."机器学习在太阳物理中的应用".中国科学:物理学 力学 天文学(Scientia Sinica Pysica, Mechanica & Astronomica) 49.10(2019):105-117.
Files in This Item:
File Name/Size DocType Version Access License
机器学习在太阳物理中的应用_刘辉.pdf(942KB)期刊论文出版稿开放获取CC BY-NC-SAView Application Full Text
Related Services
Recommend this item
Bookmark
Usage statistics
Export to Endnote
Google Scholar
Similar articles in Google Scholar
[刘辉]'s Articles
[季凯帆]'s Articles
[金振宇]'s Articles
Baidu academic
Similar articles in Baidu academic
[刘辉]'s Articles
[季凯帆]'s Articles
[金振宇]'s Articles
Bing Scholar
Similar articles in Bing Scholar
[刘辉]'s Articles
[季凯帆]'s Articles
[金振宇]'s Articles
Terms of Use
No data!
Social Bookmark/Share
File name: 机器学习在太阳物理中的应用_刘辉.pdf
Format: Adobe PDF
All comments (0)
No comment.
 

Items in the repository are protected by copyright, with all rights reserved, unless otherwise indicated.